Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Journal of Medical Biomechanics ; (6): E440-E445, 2019.
Article in Chinese | WPRIM | ID: wpr-802479

ABSTRACT

Vibration represents a micro reciprocating motion of a particle or object along a line or arc relative to a reference position, while the effect of low-magnitude high-frequency vibration (LMHFV) on skeletal system cells is similar to the mechanical stimulation of muscle movement. Bone mesenchymal stem cells (BMSCs), which have been identified as force-sensitive cells, exist in the bone marrows and have the potential of multi-lineage differentiation. Their biological characteristics can change functionally according to the appropriate stimulation in vitro, in order to reach the optimal demand of the stimulation. LMHFV can promote the osteogenic differentiation of BMSCs, therefore, the research on its mechanism can contribute to the application of vibration in the treatment of diseases such as osteoporosis, fracture, osteogenesis imperfecta, obesity as well as the promotion of orthodontic tooth movement. This paper summarizes the recent progress about the effects of vibration on BMSCs stem cells in osteogenesis and the possible mechanisms, so as to provide research ideas and methods for studying the mechanical as well as biological changes of BMSCs under vibration stimulation.

2.
Journal of Medical Biomechanics ; (6): E440-E445, 2019.
Article in Chinese | WPRIM | ID: wpr-802376

ABSTRACT

Vibration represents a micro reciprocating motion of a particle or object along a line or arc relative to a reference position, while the effect of low-magnitude high-frequency vibration (LMHFV) on skeletal system cells is similar to the mechanical stimulation of muscle movement. Bone mesenchymal stem cells (BMSCs), which have been identified as force-sensitive cells, exist in the bone marrows and have the potential of multi-lineage differentiation. Their biological characteristics can change functionally according to the appropriate stimulation in vitro, in order to reach the optimal demand of the stimulation. LMHFV can promote the osteogenic differentiation of BMSCs, therefore, the research on its mechanism can contribute to the application of vibration in the treatment of diseases such as osteoporosis, fracture, osteogenesis imperfecta, obesity as well as the promotion of orthodontic tooth movement. This paper summarizes the recent progress about the effects of vibration on BMSCs stem cells in osteogenesis and the possible mechanisms, so as to provide research ideas and methods for studying the mechanical as well as biological changes of BMSCs under vibration stimulation.

3.
The Korean Journal of Orthodontics ; : 124-136, 2019.
Article in English | WPRIM | ID: wpr-919233

ABSTRACT

Orthodontic treatment is more complicated when both soft and hard tissues must be considered because an impacted maxillary canine has important effects on function and esthetics. Compared with extraction of impacted maxillary canines, exposure followed by orthodontic traction can improve esthetics and better protect the patient's teeth and alveolar bone. Therefore, in order to achieve desirable tooth movement with minimal unexpected complications, a precise diagnosis is indispensable to establish an effective and efficient force system. In this report, we describe the case of a 31-year-old patient who had a labio-palatal horizontally impacted maxillary left canine with a severe occlusal alveolar bone defect and a missing maxillary left first premolar. Herein, with the aid of three-dimensional imaging, sequential traction was performed with a three-directional force device that finally achieved acceptable occlusion by bringing the horizontally impacted maxillary left canine into alignment. The maxillary left canine had normal gingival contours and was surrounded by a substantial amount of regenerated alveolar bone. The 1-year follow-up stability assessment demonstrated that the esthetic and functional outcomes were successful.

SELECTION OF CITATIONS
SEARCH DETAIL